
8 The Delphi Magazine Issue 33

Multiple Undo
by Warren Kovach

In his recent review of my book
Delphi 3 – User Interface Design

(in Developers Review Issue 2),
Richard Stevens mentioned that
one thing he would like to have
seen is a section on how to imple-
ment a multiple undo system. Let it
not be said that I don’t give my
readers what they want! Here,
Richard, is how you do multiple
undo...

Windows has a basic undo facil-
ity built into some controls, such
as the edit control used in TEdit
and TMemo. By sending an EM_UNDO
message to an edit control you can
have Windows restore the last text
deleted or remove the last charac-
ters typed. However, this only
works once. If you delete some-
thing then type some more text,
Windows provides no way to get
back the deleted text.

Most modern programs will
have a multiple undo facility that
lets you reverse any number of
recent changes. This not only pro-
vides the security of knowing that
you can reverse any accidental
changes made, it also allows you to
play ‘what if’ with a document. You
can experiment with a series of
changes safe in the knowledge that
you can take it back to its original
state if the experiment doesn’t pan
out.

A multiple undo facility is usu-
ally implemented as a sequential
one. If you want to reverse a
change you made a while ago, you
must reverse all the intervening
actions as well. It is done this way
because the different actions may
be interrelated.

Let’s say you have entered some
text, then later inserted some more
text into the middle of the previ-
ously entered section. Now you
want to perform an undo on just
the first batch of text. What hap-
pens to the text you entered later?
Should it be left there, perhaps out
of context? Should it also be
deleted? Rather than tackle these
problems most programs simply

undo all the intervening actions as
well.

With this model the obvious
method of implementing a multiple
undo is as a stack. For those new to
data structures, a stack is a last-in-
first-out (LIFO) structure. It is simi-
lar to a stack of dinner plates. New
plates are added to the top of the
stack. If you then want to retrieve a
plate you take one off the top, not
from the bottom. If you want to
retrieve the fifth plate down from
the top you must also remove the
four on top of it.

Command Objects
So what do we save on the stack?
You could use the stack simply to
store the data (perhaps wrapped
up in an object). When your
program draws a circle it also
creates an object containing data
about it (such as its position and
radius) and places it on the stack.
When an undo command is issued
it retrieves the data and tries to
remove that circle. This can get a
bit messy, though, as your
program code gets littered with
extra lines concerned with
maintaining the stack, which can
reduce the readability. Also, if
there are a large number of differ-
ent types of actions that can be
undone, the event handler for the
Edit | Undo menu item can get
convoluted.

It would make more sense (and
fit in better with object oriented
programming’s encapsulation
principle) to have the undo object
take over all the work. Let’s not just
view the object on the stack as a
repository of data. Let’s look at the
object as a command of some sort
that knows how to reverse itself.
Instead of your program drawing a
circle and adding its undo data to a
buffer, it should create a ‘draw a
circle’ object. Your program
simply executes the object to do
the drawing, after which it is saved
on the stack. If the user selects the
Undo menu item then you just tell

the circle object to remove itself
from the canvas.

This approach is the classic
‘command pattern’ described in
the book Design Patterns –
Elements of Reusable Object-
Oriented Software (by Erich
Gamma, Richard Helm, Ralph
Johnson and John Vlissides, pub-
lished by Addison-Wesley, 1995).
This model, where each command
handled by a program is wrapped
up in an object, not only lets you
undo actions, it also facilitates
queuing and logging actions and
directing them to appropriate sub-
systems or clients.

A minimum undoable command
object needs two methods. One,
perhaps called DoCommand or Exe-
cute, actually carries out the
action, such as drawing a circle on
a canvas. Another one, called Undo,
reverses the effect of the com-
mand. If you wish to be able to redo
undone commands you can also
have a Redo method. This may
simply call DoCommand again or it
may have to take special steps to
redo the action.

A nice addition, from a user
interface point of view, is to have
the object also return a descrip-
tion of the type of command it per-
forms. The description can then be
used for the text on a menu or dis-
played in the hint area of a status
bar so that the user knows what
will be undone. You can have dif-
ferent descriptions for different
purposes, such as Undo line draw-
ing or Redo typing ‘Hello world’.
Each descendant object defines its
own descriptions.

Let’s look at the abstract base
class for our hierarchy of com-
mand objects (Listing 1). As prom-
ised, it has three public methods:
DoCommand, Undo and Redo. These are
abstract methods, as each type of
command class will have to tailor
these to its own use. The class also
has a series of properties and asso-
ciated read methods that return
appropriate descriptions of the

10 The Delphi Magazine Issue 33

type
TUndoItem = class(TObject)
protected
function GetUndoDescription : string; virtual;
function GetShortUndoDescription : string; virtual;
function GetRedoDescription : string; virtual;
function GetShortRedoDescription : string; virtual;
function GetUndoMenuText : string; virtual;
function GetRedoMenuText : string; virtual;

public
procedure DoCommand; virtual; abstract;
procedure Undo; virtual; abstract;
procedure Redo; virtual; abstract;
property UndoDescription : string read GetUndoDescription;
property ShortUndoDescription : string read GetShortUndoDescription;
property RedoDescription : string read GetRedoDescription;
property ShortRedoDescription : string read GetShortRedoDescription;
property UndoMenuText : string read GetUndoMenuText;
property RedoMenuText : string read GetRedoMenuText;

end;

➤ Listing 1

undo redo

typing

deleting

typing

typing

change font

pasting

typing

deleting

typing

typing

change font

pasting

typing

deleting

typing

typing

change font

pasting

➤ Figure 1

command. The MenuText ones pro-
vide the entries for the Undo and
Redo menu items on the Edit menu,
while the others provide either
long or short descriptions of the
undo and redo actions.

Stacking ‘Em Up
Now that we have our basic undo-
able command object design we
need a data structure in which to
keep instances of it. We could roll
our own stack structure using
pointers or arrays, but a simpler
method is to customize Delphi’s
TList class. We can use the Add
method to add objects to the stack
and Delete to remove them. How-
ever, we must take care to enforce
the LIFO nature of a stack, so we
don’t call Add and Delete directly.
This is particularly important for
Delete, since this method can
delete items anywhere, not just at
the top of the stack. Instead we
define our own methods for
manipulating the stack. These
always use Add, which adds objects
to the end of the list, and
Delete(pred(Count)), which rem-
oves the last item in the list.

Our stack is going to provide a
multiple redo facility as well as
undo. We do this by providing a
pointer to the top of the undo
stack. When a command is undone
the pointer is moved down, to
point to the next item in the stack
that can be undone. Anything
above this pointer is a candidate
for redo. If the user chooses to
redo an action, the item just above
the stack pointer is redone and the
pointer is moved up. Figure 1
illustrates this.

We also must dispose of all redo
items each time a new command is
added. This is done for the same
reason that the undo stack is
sequential: if we try to redo a com-
mand after we have changed the
underlying document, the results
could be undefined. We cannot
redo the formatting of a section of
text if an intervening new action
has deleted that text.

Listing 2 gives the important
methods of our undo stack, TUndo-
Stack. A key field in the object is
CurrentUndo. This is the stack
pointer that defines the boundary
between undo and redo objects. If
nothing has been undone (and
therefore there are no redo items)
then the pointer is equal to the
highest list index (Count - 1). If Cur-
rentUndo is ever less than this then
there are some undone commands
that can be redone. The CanRedo
boolean method is used to check
this status. The accompanying
CanUndo method simply checks
whether there are events that can
be undone. These methods and
fields are used to set the properties

CurrentItem and CurrentRedoItem,
which return pointers to the
appropriate TUndoItems.

Now, on to the heart of the undo
stack, the Submit method. It is
through this that command
objects are actually executed and
added to the stack. The calling pro-
gram will create an appropriate
command object and pass it to the
stack through this method. The
first order of business is to call the
command object’s DoCommand
method. This will perform what-
ever needs to be done, such as
draw a circle or change the format-
ting of some text. Submit then sets
about maintaining the stack. If any
items are available for redoing
these are disposed of. If the stack
is full then an older undo item must
be removed to make room for the
new one. Finally, the inherited
TList.Add is called to add the
object to the stack and CurrentUndo
is pointed at it. The method
returns an indicator of whether the
stack is full, in case the calling pro-
gram needs to know if earlier undo
items were removed.

Undoing and redoing commands
is done through the Undo and Redo
methods of TUndoStack. These call
the equivalent methods of the cur-
rent undo and redo items. The
methods allow several items to be
dealt with at once.

Using The Stack
Now, let’s take a look at how to
create and use an undo stack. We
will create a graphics window that
lets you place different shapes on
the canvas by clicking with the

12 The Delphi Magazine Issue 33

constructor TUndoStack.Create(AMaxItems : integer);
begin
inherited Create;
FMaxItems := AMaxItems;
if FMaxItems > MaxListSize then
FMaxItems := MaxListSize;

CurrentUndo := -1;
end;
destructor TUndoStack.Destroy;
begin
Clear;
inherited Destroy;

end;
procedure TUndoStack.Clear;
var i: Integer;
begin
for i := pred(Count) downto 0 do
DeleteAndFree(i);

inherited Clear;
end;
procedure TUndoStack.DeleteAndFree(Item : integer);
begin
TUndoItem(Items[Item]).Free;
inherited Delete(Item);

end;
procedure TUndoStack.SetMaxItems(AMaxItems : integer);
var i : integer;
begin
{ delete oldest entries if list is shrinking }
if AMaxItems < FMaxItems then
for i := 0 to pred(FMaxItems - AMaxItems) do
DeleteAndFree(0);

FMaxItems := AMaxItems;
CurrentUndo := pred(Count);

end;
function TUndoStack.GetCurrentItem : TUndoItem;
begin
if CanUndo then
Result := Items[CurrentUndo]

else
Result := nil;

end;
function TUndoStack.GetCurrentRedoItem : TUndoItem;
begin
if CanRedo then
Result := Items[succ(CurrentUndo)]

else
Result := nil;

end;

function TUndoStack.CanUndo : boolean;
begin
Result := CurrentUndo >= 0;

end;
function TUndoStack.CanRedo : boolean;
begin
Result := (Count > 0) and (CurrentUndo < pred(Count));

end;
function TUndoStack.Submit(Item:TUndoItem) : TStackStatus;
var i : integer;
begin
Item.DoCommand;
if CanRedo then
for i := pred(Count) downto succ(CurrentUndo) do
DeleteAndFree(i);

if Count >= MaxItems then begin
DeleteAndFree(0);
Result := ssFull;

end else
Result := ssNotFull;

inherited Add(Item);
CurrentUndo := pred(Count);

end;
procedure TUndoStack.Undo(Num : integer);
var i : integer;
begin
if CanUndo then
for i := 1 to Num do begin
CurrentItem.Undo;
dec(CurrentUndo);
if not CanUndo then exit;

end;
end;
procedure TUndoStack.Redo(Num : integer);
var i : integer;
begin
for i := 1 to Num do
if CanRedo then begin
CurrentRedoItem.Redo;
inc(CurrentUndo);

end;
end;
procedure TUndoStack.RemoveLastItem;
begin
if Count > 0 then begin
DeleteAndFree(pred(Count));
dec(CurrentUndo);

end;
end;

➤ Listing 2
procedure TDrawShapeUndoItem.DoDrawing;
begin
with Canvas,Location do begin
Pen.Mode := pmNotXOR;
case DrawingTool of
dtLine :
begin
MoveTo(Right,Top);
LineTo(Left,Bottom);

end;
dtRectangle : Rectangle(Left,Top,Right,Bottom);
dtEllipse : Ellipse(Left,Top,Right,Bottom);
dtRoundRect : RoundRect(Left,Top,Right,Bottom,

(Left-Right) div 2,(Top-Bottom) div 2);
end;

end;
end;

➤ Listing 3

var Item : TUndoItem;
{ ... }
if Button = mbLeft then begin
Item := TDrawShapeUndoItem.Create(Image1.Canvas,
Rect(x,y,x+50,y+50),DrawingTool);

if UndoStack.Submit(Item) = ssFull then
ShowMessage(Format(sStackFull,[UndoStack.MaxItems]));

end;

➤ Listing 4

mouse. The drawing (and undoing)
of each shape will be handled by a
command object called TShapeUn-
doItem, descended from TUndoItem.

TShapeUndoItem has three private
fields, the settings of which are
passed through the constructor
Create. Location is a TPoint that
gives the position at which a
graphic object should be drawn,
DrawingTool is an enumerated type
indicating which shape should be
drawn, and Canvas is the drawing
surface that should be used.

The DoCommand method, which
the TUndoStack calls when the com-
mand object is submitted, simply
calls the DoDrawingmethod (Listing
3). The first order of business in
that method is to set the Pen.Mode
property of the Canvas to pmNotXOR.
This will draw a shape, allowing us
to erase it by simply calling DoDraw-
ing again: this is all that the Undo
and Redo methods do. After this is a
case statement that draws the
appropriate shape, depending on

what type of drawing tool was
passed to the command object on
creation.

Submitting the command object
to the undo stack is a simple proce-
dure. We just create an OnMouseDown

event handler and add the code in
Listing 4 to it.

Extended Actions
The above simple example works
fine when you are dealing with

May 1998 The Delphi Magazine 13

procedure TDrawLineUndoItem.AddPointToList(P : TPoint);
begin
{$IFDEF Win32}
PointList.Add(pointer(p.x));
PointList.Add(pointer(p.y));
{$ELSE}
PointList.Add(pointer(p));
{$ENDIF}
end;
procedure TDrawLineUndoItem.DoDrawing;
begin
with Canvas,Location do begin
Pen.Mode := pmNotXOR;
MoveTo(Left,Top);
AddPointToList(TopLeft);

end;
end;
procedure TDrawLineUndoItem.AddSegment(NextPoint : TPoint);
begin
with Canvas do begin
Pen.Mode := pmNotXOR;
LineTo(NextPoint.x,NextPoint.y);

end;
AddPointToList(NextPoint);

end;
procedure TDrawLineUndoItem.Undo;
var
i : integer;
P : pointer;
{$IFDEF Win32}
Point : TPoint;
{$ENDIF}

begin
with Canvas do begin
Pen.Mode := pmNotXOR;
{$IFDEF Win32}
P := PointList[0];
Point.X := Longint(P);
P := PointList[1];
Point.y := Longint(P);
with Point do Moveto(x,y);
for i := 2 to pred(PointList.Count) do begin
P := PointList[i];
if Odd(i) then begin
Point.y := Longint(P);
with Point do LineTo(x,y);

end else
Point.X := Longint(P);

end;
{$ELSE}
P := PointList[0];
with TPoint(P) do Moveto(x,y);
for i := 1 to pred(PointList.Count) do begin
P := PointList[i];
with TPoint(P) do LineTo(x,y);

end;
{$ENDIF}
end;

end;
procedure TDrawLineUndoItem.Redo;
begin
Undo;

end;

➤ Listing 5

discrete actions and events. But
what about commands that, to the
user, seem like one action, but are
programmatically a series of con-
nected events? When a user of a
graphics program presses and
holds the mouse button, moves the
mouse to draw a free-form line, and
releases the button, he or she
views that as one action. However,
at the programmer’s level this is a
series of events: the mouse button
down, a series of mouse move
events, and the mouse button up.
Each segment of the line is drawn
with a separate call to the LineTo
method each time a mouse move
event is trapped. When the user
selects Edit | Undo after drawing a
free-form line the whole line should
disappear. But, if we put each
LineTo command onto the undo
stack then the user may have to
select Undo dozens of times to undo
the single free-form line. To rectify
this, we must trap the series of
events and turn them into one
single undo object.

Listing 5 shows the main meth-
ods of a TDrawLineUndoItem class,
descended from TDrawShapeUndoI-
tem. This extends the previous
class by allowing the program to
add new data to that already
stored in the object. When the user
starts to draw a line an instance of
the object is created (in the
OnMouseDown event handler), stor-
ing the initial mouse position.
Then, each time the mouse is

moved a method of the undo
object called AddSegment is called.
This receives the new position of
the mouse, draws a line from the
previous position to the new one,
then adds the new position to a list
of previous mouse coordinates.
When Undo or Redo are called the
object steps through the list,
redrawing the lines to each
position.

The simplest way to maintain a
list is with a TList. Normally a TList
is used to hold objects, or at least
pointers to something. However, if
you want to store some type of
data that fits into the same space
as a pointer (four bytes) you can
store these directly in a TList.
Then, by typecasting the value
returned by TList.Items, we can
retrieve the data. This is done in
the AddPointToList and Undo meth-
ods in Listing 4, where TPoints are
stored. Under Delphi 1 a TPoint is 4
bytes, so it can be stored as a single
item in a TList. Under 32-bit Delphi
it is 8 bytes, so the x and y coordi-
nates must be stored separately.

AddPointToList is first called in
the DoDrawing method, where the
initial mouse coordinates are
stored and a MoveTo is issued to set
the starting point for drawing.
Then, each time the mouse is
moved the method AddSegment is
called. This takes the new mouse
coordinates, draws a line to the
new position and stores the
position in the list. AddSegment is

called one final time when the
mouse button is released. To undo
(or redo) the line we simply walk
through the list of positions,
retrieving them by typecasting the
value returned by the TList.Items
array property, and draw the line
segment.

We’ll now create a graphics
drawing window that uses both
the shape and line drawing com-
mand objects (Listing 6). To keep
track of line drawing actions two
boolean fields must be used, Line-
Drawing and MouseMoved. LineDraw-
ing is set to True when the mouse
button is pressed and back to
False when it is released. Then,
when mouse movements are
trapped in Image1MouseMove, Add-
Segment is only called if line draw-
ing is occurring. MouseMoved is also
set to True here. It is a flag that lets
us know if the mouse was moved
while the button was down. We
don’t want to store anything on the
undo stack if a user simply clicks
the mouse without moving it to
draw a line, so we remove the
command object with the Remove-
LastItem method of TUndoStack.

Text Editing
As I mentioned at the start of this
article, TMemo has its own single
undo built in. We can extend this to
multiple undo using another
descendant of TUndoItem. However,

14 The Delphi Magazine Issue 33

procedure TGraphicWindow.Image1MouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

var Item : TUndoItem;
begin
MouseMoved := false;
Case Button of
mbLeft :
begin
if DrawingTool = dtLine then begin
LineDrawing := true;
Item := TDrawLineUndoItem.Create(Image1.Canvas, Rect(x,y,x,y),
DrawingTool);

end else
Item := TDrawShapeUndoItem.Create(Image1.Canvas, Rect(x,y,x+50,y+50),
DrawingTool);

if UndoStack.Submit(Item) = ssFull then
ShowMessage(Format(sStackFull,[UndoStack.MaxItems]));

end;
end;

end;

procedure TGraphicWindow.Image1MouseMove(Sender: TObject; Shift: TShiftState;
X, Y: Integer);

begin
if LineDrawing then begin
MouseMoved := true;
with UndoStack.CurrentItem as TDrawLineUndoItem do
AddSegment(Point(x,y));

end;
end;

procedure TGraphicWindow.Image1MouseUp(Sender: TObject; Button:
TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
if LineDrawing and (Button = mbLeft) then begin
if MouseMoved = false then
UndoStack.RemoveLastItem

else with UndoStack.CurrentItem as TDrawLineUndoItem do
AddSegment(Point(x,y));

LineDrawing := false;
MouseMoved := false;

end;
end;

➤ Listing 6

first is TClearingUndoItem, a com-
mand object for deleting text. It has
a field called DeletedTextwhere the
text is stored, as well as a StartPos
field holding the cursor position of
the start of the text, and an Editor
field that points to the appropriate
TMemo component. A descendant of
this called TTypingUndoItem is then
declared. This adds an Inserted-
Text field and a CurPos field that
stores the cursor position after
each character is added to
InsertedText.

The DoCommand method of these
classes is simply an empty proce-
dure, since Windows does the
entering of the text. Instead, any
text deleted (or the initial
character of text being typed) is
passed to the object through the
constructor.

With TClearingUndoItem that is all
there is, since clearing text is a dis-
crete event, not an extended one
like typing or line drawing. Rein-
serting deleted text can most easily
be done under 32-bit Delphi using
the Text property of the TMemo (in
Delphi 1 you can avoid the 255
character limit by using GetTextBuf

and SetTextBuf). The text is simply
put back at the appropriate place
of the memo text using the Insert
procedure. The cursor position is
also reset through the SelStart
property and the text is scrolled to
bring the cursor into view, if neces-
sary, using the EM_SCROLLCARET
message. Redoing is similar but
text is instead removed with the
Delete procedure.

With a TTypingUndoItem object
the initial inserted text (usually the
first character typed) and any
replaced text is passed to the con-
structor. This then calls AddText,
which is also invoked by the key-
trapping routine each time a
subsequent character is typed. In
most cases this adds the text to the
end of the existing InsertedText
string. If a carriage return is
detected it is added along with a
linefeed character. This is neces-
sary for the lines to be separated
properly when the text is put back
with a Redo.

If the character is a backspace
then the last character in Insert-
edText is deleted. In some cases
InsertedText may be empty
because we are backspacing over
text typed in a previous action. In
this case the text is added to the
DeletedText field. Undo and Redo are
similar to those in TClearingUndoI-
tem, except that the use of Insert
and Delete are reversed. When
redoing we must check if StartPos
is greater than CurPos (which hap-
pens when text is being deleted
with the backspace). We must
ensure that the lower of the two is
passed to Delete.

Code showing how to use these
two command objects is in Listing
8. As with the line drawing com-
mand object, we must have a boo-
lean variable, Typing, to keep track
of whether we are currently typing
some text. We watch what the user
is doing in the TMemo control by
trapping key down events in the
Memo1KeyDownmethod. First we look
to see if the key is the delete key. If
so we create a TClearingUndoItem,
passing it either the selected text
or the character to the right of the
cursor. Otherwise we use ToASCII
to check if the key pressed was a
typed character of some sort.

the nature of the Windows edit
control introduces more prob-
lems. In the graphics drawing
window our program had direct
control of doing the drawing. But,
in a TMemo, Windows takes care of
entering the characters. All we can
do is watch what is happening then
try to take some action after the
event. Any command object we
wrap around this will not actually
enter any text itself, it will just
store the changes to the text, then
reverse them later if Undo is called.

As with the line drawing object,
our text command object must
store a whole series of characters
that are typed. In this case it will
look for keys being pressed then, if
text was entered, that text is added
to the current command object
with an AddText method.

If you select some text and start
typing, the new text replaces the
old. Therefore, our typing com-
mand object must not just store
text that is typed, it should also be
prepared to store any text that has
been replaced.

We will create two text undo
objects, as shown in Listing 7. The

16 The Delphi Magazine Issue 33

constructor TClearingUndoItem.Create(AEditor : TMemo;
ADeletedText : string; APosition : integer);

begin
inherited Create;
StartPos := APosition;
DeletedText := ADeletedText;
Editor := AEditor;

end;
procedure TClearingUndoItem.DoCommand;
begin
;

end;
procedure TClearingUndoItem.Undo;
var
TempText : string;

begin
TempText := Editor.Text;
Insert(DeletedText,TempText,succ(StartPos));
Editor.Text := TempText;
Editor.SelStart := StartPos;
Editor.Perform(EM_SCROLLCARET,0,0);

end;
procedure TClearingUndoItem.Redo;
var
TempText : string;

begin
TempText := Editor.Text;
Delete(TempText,succ(StartPos),length(DeletedText));
Editor.Text := TempText;
Editor.SelStart := StartPos;
Editor.Perform(EM_SCROLLCARET,0,0);

end;
constructor TTypingUndoItem.Create(AEditor : TMemo;
AInsertedText,ADeletedText : string; APosition : integer);

begin
inherited Create(AEditor,ADeletedText,APosition);
AddText(AInsertedText,APosition);

end;
procedure TTypingUndoItem.AddText(AText : string2;
APos : integer);

const
BackSpace = #08;
CR = #13;
LF = #10;

var
Temp : integer;

begin
if AText = CR then begin
AText := AText + LF;
CurPos := APos + 2;

end else if AText[1] = BackSpace then begin
if APos > 0 then begin
if InsertedText = '' then
Insert(Editor.Text[(APos)],DeletedText,1)

else
Delete(InsertedText,length(InsertedText),1);

CurPos := pred(APos);
end;

end else begin
InsertedText := InsertedText + AText;
CurPos := succ(APos);

end;
end;
procedure TTypingUndoItem.Undo;
var TempText : string;
begin
TempText := Editor.Text;
Delete(TempText,succ(StartPos),length(InsertedText));
if DeletedText <> '' then
Insert(DeletedText,TempText,succ(StartPos));

Editor.Text := TempText;
Editor.SelStart := StartPos;
Editor.Perform(EM_SCROLLCARET,0,0);

end;
procedure TTypingUndoItem.Redo;
var TempText : string;
begin
TempText := Editor.Text;
if DeletedText <> '' then
if StartPos > CurPos then
Delete(TempText,succ(CurPos),length(DeletedText))

else
Delete(TempText,succ(StartPos),length(DeletedText));

Insert(InsertedText,TempText,succ(StartPos));
Editor.Text := TempText;
Editor.SelStart := CurPos;
Editor.Perform(EM_SCROLLCARET,0,0);

end;

➤ Listing 7
ToASCII is a Windows API func-

tion that takes a virtual key code
and the keyboard state and tries to
convert it to the ASCII value of a
character. Many keys, such as
function or cursor keys, do not cor-
respond to ASCII characters, so the
result from ToASCII will be zero.
This function is discussed in more
detail in my article in Issue 26 of
The Delphi Magazine.

If the key pressed is a regular
character key then we check if we
are in typing mode. If not, we create
a TTypingUndoItem, passing it this
first character typed. It is added to
the stack and Typing is set to True. If
we are already typing then we add
the new character to the undo item
with AddText. If any other type of
key was pressed (such as a cursor
key) then we call EndTyping, which
simply sets Typing to False. EndTyp-
ing should also be called when any
other action that should punctuate
a typing event occurs; these could
include clicking the mouse button
or changing the font.

Descriptions
Our command objects have
various properties (for example

UndoDescription and RedoMenuText)
that return descriptive text about
their function (see Listing 1). We
can access short or long descrip-
tions of the undo and redo actions
as well as text designed to be used
as the Edit menu entries. In some
cases, such as in the abstract base
class and the line drawing class, we
simply return a static string.
TShapeDrawingUndoItem returns
descriptions including the shape
that has been drawn; these are pro-
duced using the Delphi Format pro-
cedure and appropriate constants
or resourcestrings. The text com-
mand classes return strings incor-
porating the first few characters of
the text that was typed or deleted.
Now we must do something useful
with these strings.

In the example program on the
disk TUndoStack has a method
called SetUndoMenuItems. This takes
two TMenuItems as its parameters
then makes the appropriate assign-
ments to the Caption and Hintprop-
erties, retrieving descriptions from
the current undo and redo objects.
It also enables the menu items and
sets their OnClick event handlers to
call the stack’s Undo and Redo

methods. Also in the same unit as
the undo stack is a global proce-
dure called DisableUndoMenus. This
disables the menu items and
OnClick function, sets the menu
text to generic Undo and Redo
entries, and sets the hints to a
string that says Command not avail-
able; nothing to undo.

When a new MDI application is
created from a Delphi template it
includes a method called Update-
MenuItems. This enables or disables
various menu items depending on
whether any child windows are
open. It is in this method that our
example program calls SetUndo-
MenuItems and DisableUndoMenus.

One problem with the default
UpdateMenuItemsmethod is that it is
only called when the active
window is changed. However, we
need to have it updated whenever
the undo stack changes. To do this
we add a couple of new methods to
the main form. First we create a
message handler method to trap
the Windows WM_INITMENUPOPUP
message. This indicates that a
menu is about to popup, so we can

May 1998 The Delphi Magazine 17

take any action we need to make
sure the items on that menu are
accurate. The method simply calls
UpdateMenuItems followed by a call
to the inherited method.

This works fine when using just
the menus, but you may also want
to have keyboard shortcuts for
Undo and Redo. When the shortcuts
are pressed the menu isn’t shown,
so WM_INITMENUPOPUP doesn’t get
sent. This may leave the menu
items disabled and the shortcuts
unusable. To ensure the menu
items are always up to date we can
use the Application.OnIdle event.
This is called whenever the pro-
gram finishes processing all its
waiting messages and goes into an
idle state. We point this event to
our IdleHandler method in Form-
Create. Then within the method we
call UpdateMenuItems.

New Model Army?
The above classes implement a
multiple undo facility that follows
the model used by most programs.
A single stack of undo objects is
used for each child window and the
stack is sequential. If you want to
undo the changes you made a
while ago you must undo all the

intervening changes too. It some-
times is debatable whether it is
more work to retype the text you
accidentally deleted a while ago or
to reimplement all the other
changes you’ve made since. This
can be particularly annoying if the
intervening changes would have
had no effect on the retyped text;
they may have been complicated
formatting changes to other areas
of the text.

One solution to this is what Alan
Cooper, in his book About Face –
The Essentials of User Interface
Design (IDG Books, 1995) calls
category-specific undo. Instead of
having all undo actions on a single
stack, several stacks are created,
one for each class of operation. A
text editor could have one stack
that saves all the typing and delet-
ing commands while another saves
the formatting commands. Then
you can undo changes to each
independently. This may seem
ideal and in some situations would
work well. However, the changes in
the two stacks might not necessar-
ily be independent.

Let’s say you’ve typed some text,
then changed its formatting to
italic. You then choose to undo

typing of the text, which is stored
on the typing command stack,
then choose to undo the change to
italic from the formatting stack.
The undo object will try to set a
block of text back to roman letters,
but that block is no longer there.
What will probably happen is that
the text that is now at the position
where the text was undone will be
converted to roman, which may
not be desirable. Alternatively,
some mechanism must be in place
so that the formatting undo object
knows that the text is no longer
there; in this case it does nothing.
However, this can quickly become
a very complicated and error
prone scenario because the text
that was formatted may overlap
two or more separately typed
sections of text.

Another problem is one of user
interface. You may feel that your
program would be best served
with five separate stacks of com-
mand objects for five different
types of functions. How do you
present this to the user? You could
have five undo and five redo items
on the Edit menu but that is very
unwieldy. You could have a
submenu of five entries off the Edit
| Undo menu item and likewise for
the Redo menu. But, some users
have problems manoeuvring
through nested submenus. It could
be done somehow through a dialog
box. At any rate, it makes the undo
function much more difficult to
access; a simple Ctrl-Z is so much
easier.

I personally don’t know of any
programs that use category-
specific undo (please let me know
if you know of any!). It could be an
attractive way to avoid the
problems with sequential multiple
undo but has its own problems. It
is something that needs more
development and experimentation.

Warren Kovach doesn’t believe in
the phrase ‘What’s done is done.’
He also writes and sells statistical
software and is the author of
Delphi 3 User Interface Design,
published by Prentice Hall. Email
Warren at wlk@kovcomp.co.uk or
visit www.kovcomp.co.uk

procedure TTextWindow.Memo1KeyDown(Sender: TObject; var Key: Word;
Shift: TShiftState);

var
KeyState : TKeyboardState;
Buffer : array[0..2] of char;
ToASCIIResult : integer;
Item : TUndoItem;

begin
Item := nil;
with Memo1 do
if (SelLength > 0) and (key in [VK_Delete,VK_Back]) then begin
EndTyping;
Item := TClearingUndoItem.Create(Memo1,SelText,SelStart);

end else if key = VK_Delete then begin
Item := TClearingUndoItem.Create(Memo1,Text[succ(SelStart)],SelStart);

end else begin
FillChar(Buffer,sizeof(Buffer),0);
GetKeyboardState(KeyState);
ToASCIIResult := ToASCII(Key,MapVirtualKey(Key,0),KeyState,Buffer,0);
if ToASCIIResult > 0 then begin
if not Typing then begin
Item := TTypingUndoItem.Create(Memo1,StrPas(Buffer),SelText,SelStart);
Typing := true;

end else
with UndoStack.CurrentItem as TTypingUndoItem do
AddText(StrPas(Buffer),(SelStart));

end else begin
EndTyping;

end;
end;

if Item <> nil then
if UndoStack.Submit(Item) = ssFull then
ShowMessage(Format(sStackFull,[UndoStack.MaxItems]));

end;

procedure TTextWindow.EndTyping;
begin
if Typing then
Typing := false;

end;

➤ Listing 8

	Command Objects
	Stacking ‘Em Up
	Using The Stack
	Extended Actions
	Text Editing
	Descriptions
	New Model Army?

